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Abstract

A general procedure is described for the preparation of 6-substituted-5-hydroxy-3-oxo-2,3-dihydro-pyridazine-4-carboxylic acid ethyl
esters (6-substituted-5-hydroxy-3(2H)-pyridazinone-4-carboxylic acid ethyl esters). These compounds are shown to undergo selective
alkylation at the 2-position in moderate to good yields (19–77%) to afford 2,6-disubstituted-5-hydroxy-3-oxo-2,3-dihydro-pyridazine-
4-carboxylic acid ethyl esters (2,6-disubstituted-5-hydroxy-3(2H)-pyridazinone-4-carboxylic acid ethyl esters).
� 2007 Elsevier Ltd. All rights reserved.
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3(2H)-Pyridazinones (3-oxo-2,3-dihydro-pyridazines)
are an important class of biologically active molecules with
many potential therapeutic applications. For example,
these molecules have been previously reported to be plate-
let aggregation inhibitors,1 a-adrenoceptor antagonists,2

and antisecretory/antiulcer agents.3 We previously
reported a versatile synthesis to prepare 2,6-disubstituted-
5-hydroxy-3-oxo-2,3-dihydro-pyridazine-4-carboxylic acid
ethyl esters (4),4 in which the 2-substituent was introduced
in the first step of the synthetic sequence. Herein we report
a novel synthesis of the same heterocycles that regioselec-
tively introduces the 2-substituent in the final step, allowing
facile variation at this position.

Our retrosynthetic strategy employed the condensation
of a variety of a-keto-esters with commercially available
hydrazinocarbonyl-acetic acid ethyl ester followed by an
intramolecular Dieckmann cyclization to afford 6-substi-
tuted-5-hydroxy-3-oxo-2,3-dihydro-pyridazine-4-carboxylic
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acid ethyl esters (3). We envisioned the di-anions of these
cyclized intermediates undergoing selective alkylation with
electrophiles at the 2-position to provide the title
compounds (4) (Scheme 1). Similar N-alkylations of
Scheme 1. Reagents and conditions: (i) Hydrazinocarbonyl-acetic acid
ethyl ester, DMSO, 0.4% TFA (v/v), 70 �C, 16 h; (ii) NaOAc, DMF,
150 �C, 30 min, �2 h; (iii) NaH, DMF, 25 �C, 10 min followed by addition
of electrophiles, then heating (if needed).
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3(2H)-pyridazinones have been reported to proceed in the
presence of KOH under phase transfer conditions,5 with
metallic sodium in absolute ethanol,6 and with NaH in
DMF.7 However, to the best of our knowledge, there are
no reported examples of the regioselective alkylation of
3(2H)-pyridazinones containing unprotected hydroxyl
groups at the 5-position.

We initially evaluated the feasibility of forming the
cyclized intermediates (3). The condensation of aryl- and
alkyl-a-keto-esters (1) with hydrazinocarbonyl-acetic acid
ethyl ester proceeded in DMSO containing 0.4% TFA (v/v)
at 70 �C overnight to afford the hydrazone intermediates
2a–h (Table 1). In all cases, analysis of the reaction mix-
tures by LC–MS indicated two distinct products with the
desired mass, presumably the E and Z hydrazone isomers.
Purification by flash column chromatography yielded
either a major hydrazone product (P10:1 mixture of iso-
mers; suggesting isomerization on silica gel) or an insepara-
ble, near-equal mixture of isomers.12 Heating the purified
Table 1
Synthesis of 6-substituted-5-hydroxy-3-oxo-2,3-dihydro-pyridazine-4-carb-
oxylic acid ethyl esters (3)17,18

Entry R1 Products 2a (Isolated
yield, %)b

Products 3 (Isolated
yield, %)c

1
S

2a (85) 3a (80)

28
N

S
2b (84) 3b (82)

3 2c (86) 3c (74)

49 2d (20)d 3d (60)

510 2e (73) 3e (51)

6 2f (33)d 3f (85)

711 2g (65) 3g (95)e

89 2h (68) 3h (38)

a P10:1 Mixture of E and Z-isomers unless otherwise noted.
b Isolated yields after flash column chromatography.
c Isolated yields after precipitation from the crude reaction mixtures

unless otherwise noted.
d Near-equal mixture of E and Z-isomers.
e Purified by concentrating the cooled reaction mixture and passing the

residue through a plug of silica gel, eluting with 100% EtOAc, followed by
concentration in vacuo to afford a brown solid.
hydrazones, either as inseparable mixtures or major iso-
mers, in the presence of 2 equiv of NaOAc in DMF at
150 �C, afforded the desired cyclized intermediates 3a–h

in less than 2 h (Table 1). In cases where near-equal mix-
tures of hydrazone isomers were cyclized, the disappear-
ance of both isomers was observed suggesting their
in situ isomerization under the reaction conditions. In most
cases, the products could be isolated in pure form by addi-
tion of aqueous 1 M HCl to the cooled reaction mixture
followed by filtration of the resulting precipitate.

With the cyclized intermediates (3) in hand, we investi-
gated methods that would afford selective derivatization
of the 2-position. Initial attempts to alkylate 3a with iso-
amyl bromide using KOH and TBAB in benzene5 failed
to give any desired product. Alternatively, treatment of
3a with 2.2 equiv of NaH in DMF followed by 1.1 equiv
of isoamyl bromide and heating at 80 �C for 3 h afforded
the N-alkylated product in 74% yield. The site of alkylation
was confirmed by matching the 13C NMR spectral data for
the isolated product with the corresponding data for the
identical 3(2H)-pyridazinone that was prepared through
an unambiguous, independent synthesis.13

Encouraged by this result, we explored the ability of this
method to selectively derivatize cyclized pyridazinones 3a–
h with a variety of alkylating agents (Table 2). The use of
primary and secondary alkyl halides typically afforded
the desired products in good yields, regardless of the R1

substituent present on the pyridazinone ring (entries
1–12). A double alkylation product, presumably the enol
ether, was observed (estimated yield of 80% based on
LC–MS of the crude reaction mixture) from the alkylation
of 3f at 80 �C, contributing to the lower yield of the mono-
alkylated pyridazinone (entry 6). However, the formation
of this di-alkylated product was suppressed by performing
the reaction at room temperature (entry 7). Utilizing the
same conditions, the alkylation of 3g, 3h, and 3a proceeded
at room temperature in moderate yields (entries 8–10).
Neopentyl iodide (entry 13) required a higher temperature
and longer reaction time to give the coupled product and
did so in reduced yield. Tosylates were tolerated as electro-
philes (entries 14 and 15) with yields comparable to those
obtained for similar alkyl halides. Pyridyl and benzyl bro-
mides (entries 16–19) coupled, but with lower yields.
Again, a double alkylation product, presumably the enol
ether, was obtained during the alkylation of 3e with benzyl
bromide (entry 20), contributing to the lower yield of the
mono-alkylated pyridazinone. The formation of this di-
alkylated product was suppressed by utilizing benzyl chlo-
ride as the electrophile (entry 21).

In summary, we have discovered an efficient method for
the synthesis of 2,6-substituted-5-hydroxy-3-oxo-2,3-dihy-
dro-pyridazine-4-carboxylic acid ethyl esters. Variation of
substituents at the 6-position is achieved via the use of
readily accessible a-keto-esters. Variation of the 2-position
substituents, introduced in the last step by selective alkyl-
ation, allows significant diversification of the pyridazinone
products due to the widely accessible set of available



Table 2
Alkylation of pyridazinones 3 with various electrophiles19

N
N
H

R1
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N
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R2

1. NaH, DMF

2. X-R23 4

Entry R1 R2 X Temperature (�C) Time (h) Yielda (%)

1
S

Br 80 3 74

2
N

S
Br 80 3 76

3 Br 80 3 73

4 Br 80 1 61

5 Br 80 1 77

6 Br 80 1 20b

7 Br 25 6 61

8 Br 25 3 41

9 Br 25 2 53

10
S

I 25 16 87

11
S

Br 80 5 73

12
S

Br 80 5 61

13
S

I 110 16 25

14
S

OTs14 80 5 52

15
S

F

F F
OTs15 80 7 35

16
S N

Brc 80 5 46

(continued on next page)
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Table 2 (continued)

Entry R1 R2 X Temperature (�C) Time (h) Yielda (%)

17
S

Br 80 5 47

18
N

S
Br 80 3 59

19 Br 80 3 61

20 Br 80 3 19

21 Cl 80 3 66

a Isolated yield unless otherwise noted.
b Estimated yield based on LC–MS of the crude reaction mixture.
c The hydrobromide salt of the alkylating agent, 2-bromomethyl-pyridine, was employed, necessitating the use of 3.2 equiv of NaH.
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alkylating agents. Over-alkylation was observed in two
cases but could be suppressed by either reducing the reac-
tion temperature or using a weaker electrophile.
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